
Developing a RINA Prototype over
IP using the TINOS framework

7th International Conference on Future Internet Technologies
September 12th, 2012

Eduard Grasa
Research Manager @ DANA

Fundació i2CAT

Outline

 Quick introduction to RINA

 RINA Adoption strategy and current prototype
rationale

 Prototype components

 Implementation platform

 Next prototyping steps: FP7 IRATI
2

RINA Architecture

3

• A structure made of
recursive layers that provide
IPC (Inter Process
Communication) services to
applications on top

• There’s a single type of layer
that repeats as many times
as required by the network
designer

• Separation of mechanism
from policy

• All layers have the same functions, with different scope and range.
– Not all instances of layers may need all functions, but don’t need more.

• A Layer is a Distributed Application that performs and manages IPC.
– A Distributed IPC Facility (DIF)

• This yields a theory and an architecture that scales indefinitely,
– i.e. any bounds imposed are not a property of the architecture itself.

© John Day, All Rights Reserved, 2011

Naming and addressing in RINA
 All application processes

(including IPC processes) have
a name that uniquely identifies
them within the application
process namespace.

 In order to facilitate its operation
within a DIF, each IPC process
within a DIF gets a synonym that
may have topological
significance within the DIF (i.e.
an address).

4

 The scope of an address is the DIF, addresses are not visible outside of the DIF.

 Each DIF has a directory that maps destination Application process names to DIF
IPC Process addresses.

 Because the architecture is recursive, applications, nodes and PoAs are relative
 For a given DIF of rank N, the process at the layer N+1 is an application and

the process at the layer N-1 is a Point of Attachment.

1 2 3 4

1 2 1 2 3 1 2

1 2 1 2

DIF A

DIF B
DIF C

DIF D

DIF E DIF F

Outline

 Quick introduction to RINA

 RINA Adoption strategy and current prototype
rationale

 Prototype components

 Implementation platform

 Next prototyping steps: FP7 IRATI
5

RINA Adoption strategy

 Start as an overlay to IP, validate technology, work on initial
concepts, develop DIF machinery.
 Useful by itself: internetwork layer(s), decouple application from infrastructure,

improved application API, support for multi-homing and mobility.
6

IP

Ethernet

Physical Media

Applications

Today

TCP or UDP

IP

Ethernet

Physical Media

Applications

Current Prototype

UDP

DIF

DIF
…

Ethernet

Physical Media

Applications

DIF

DIF
…

IP

Physical Media

Applications

TCP or UDP

DIF

DIF
…

Physical Media

Applications

DIF

DIF
…

End goal

RINA over IP benefits:
Internetwork layer(s)

 What if application A wants to communicate with Application C?
 It cannot do it, unless you start deploying middleboxes like NATs, application-layer gateways, …

The architecture doesn’t accommodate internetworking!

7

� � �

Data Link

Data Link

Data Link

Data Link

Data Link

IP

IP Network A (Public Internet)

IP

IP Network B
(Enterprise Network)

TCP

Appl. A Appl. B Appl. C

� � �

Data Link

Data Link

Data Link

Data Link

Data Link

IP

IP Network A (Public Internet)

IP

IP Network B
(Enterprise Network)

DIF

Appl. A Appl. B Appl. C

DIF

DIF

RINA over IP benefits: Separate
applications from infrastructure

 The current application namespace is tied to IP addressing
and TCP/UDP port numbers:

 This makes mobility hard to achieve
 In RINA applications have names that are independent of the

layers below (DIFs)
 Application names can be structured in a way that makes sense

for the application
 The application name doesn’t contain the semantics of where

the application is in the network (i.e. what is its point of
attachment to the layer below) 8

 http://pouzinsociety.org

Synonym of an
interface of a host

Socket (Endpoint of
TCP connection)

:80

RINA over IP benefits: Next
generation VPN

 DIFs are customizable VPNs that can span multiple IP networks.
 Each DIF has its own addressing scheme, security mechanisms (authentication,

authorization), routing strategy, resource allocation strategy (support for
different levels of QoS), flow control strategy, data transfer/data transfer
control, …

 Processes (and not systems) are members of the DIFs (different processes can
access different DIFs in each system). Processes may not have access to the
whole range of DIFs available on their system

 DIFs open the door to VPNs optimized for certain applications

9

� � �

Data Link

Data Link

Data Link

Data Link

Data Link

IP

IP Network A (Public Internet)

IP

IP Network B
(Enterprise Network)

DIF

Appl. A Appl. B Appl. C

DIF

DIF

Outline

 Quick introduction to RINA and PSOC

 RINA Adoption strategy and current prototype
rationale

 Prototype components

 Implementation platform

 Next prototyping steps: FP7 IRATI
10

Architectural model

 DIF

System (Host)

IPC
Process

IPC
Process

Mgmt
Agemt

System
(Router)

IPC
Process

IPC
Process

IPC
Process

Mgmt
Agemt

System
(Host)

IPC
Process

IPC
Process

Mgmt
Agemt

Appl.
Process

DIF

DIF

Appl.
Process

IPC API

Data Transfer Data Transfer Control Layer Management

SDU Delimiting

Data Transfer

Relaying and
Multiplexing

SDU Protection

Transmission
Control

Retransmission
Control

Flow Control

RIB
Daemon

RIB CDAP
Parser/Generator

CACEP

Enrollment

Flow Allocation

Resource
Allocation

Forwarding Table
Generator

Authentication

State Vector
State Vector
State Vector

Data Transfer Data Transfer

Transmission
Control

Transmission
Control

Retransmission
Control

Retransmission
Control

Flow Control Flow Control

11

IPC
Resource

Mgt.

Inter DIF
Directory

SDU
Protec

tion

Multipl
exing

IPC Mgt. Tasks

Other Mgt. Tasks

Application Specific
Tasks

Increasing timescale (functions performed less often) and complexity

Application 1
(uses native RINA)

 The IPC API

12

 Presents the service provided by a DIF: a communication flow between
applications, with certain quality attributes.

 6 operations:
 portId _allocateFlow(destAppName, List<QoSParams>)
 void _write(portId, sdu)
 sdu _read(portId)
 void _deallocate(portId)
 void _registerApp(appName, List<difName>)
 void _unregisterApp(appName, List<difName>

 Implementation: Native RINA API and ‘Faux Sockets’ API for Java apps,

(the latter to support legacy apps without changing them)

Application 1
(uses faux
sockets)

 RINA Lib

RINA Software

For each flow, local TCP
connection to port 32771

RINA Lib

For each flow, local TCP
connection to port 32771

 IPC Processes are just application processes. Once they have a
communication flow between them, they have to set up an application
connection before being able to exchange any further information.

 The application connection allows the two communicating apps to:
 Exchange naming information with its apposite, optionally authenticating it
 Agree on an application protocol and/or syntax version for the application

data exchange phase

 CACEP
Common Application Connection Establishment Phase

13

Appl.
Process

A

DIF

Appl.
Process

B

2 2
flow

1) 2)

3) 4)

1

M_CONNECT (srcName, destName, credentials,
proto, syntax version) Appl.

Process
A

DIF

Appl.
Process

B

2 2
flow

2

N

Optional messages exchanging authentication
information

Appl.
Process

A

DIF

Appl.
Process

B

2 2
flow

N+1

M_CONNECT_R (result, reason, options)
Appl.

Process
A

DIF

Appl.
Process

B

2 2
flow

Application data transfer phase, processes
exchange data using an application protocol

 CDAP is RINA’s application protocol, modeled after ACSE and CMIP.
 CDAP includes CACEP, so it is used both for the application connection

establishment and the application data transfer phases.

 CDAP is object oriented, providing 6 primitives to perform operations on
objects: create/delete, read/write, start/stop.
 All the objects have the following attributes: class, name, instance and value.
 The scope/filter options allow CDAP messages to be applied to multiple

objects at once.

 Implementation:
 CDAP abstract syntax defines the contents of the messages that can be used

by the protocol: connect, release (CACEP) create, delete, read, write, start,
stop and its associated response messages.

 There can be many concrete encodings for a given CDAP abstract syntax,
right now we’re using Google Protocol Buffers (GPB) – many others are
possible (JSON, ASN.1, XML, …). Reasons for GPB:
 Provides efficient encoding (bitsize and time to parse/generate)
 Being used in production by Google in massive scaled distributed systems
 Free, open source tools for developers in many programming languages

 CDAP
Common Distributed Application Protocol

 The RIB is a logical representation of the information known by an
application process.
 Doesn’t need to be a database, the information may be stored in the different

application Process components.

 The RIB Daemon provides an API to perform operations on the RIB (both
objects in the local RIB and objects in remote application processes’ RIBs).
 Transition from an IPC model to a programming model for the IPC Process

Components

 Implementation:
 The current RIB schema is a tree of the objectNames. The RIB is implemented as

a hashtable indexed by objectName
 As a simplification objectName is assumed to be unique

RIB and RIB Daemon
Resource Information Base

IPC Process

RIB Daemon

Create | delete | read | write | start | stop

Incoming CDAP messages Outgoing CDAP messages

Invoke
operations on
other IPC
Process
components or
actual data
store

Component
1

Component
1

 Enrollment allows an IPC Process to get enough state information to
became an operating member of the DIF.
 It occurs when an IPC Process that wants to joint a DIF has established an

application connection to an IPC Process that is a member of the DIF.

 Implementation:
 The current enrollment program defines the exchange of objects required to

initialize a new IPC Process as a member of the DIF, including:
 Detecting if an address is stale (or null) and assigning a valid one to the new member

(valid addresses are currently preconfigured, will be automated in the future)
 Provide information about the QoS classes supported by the DIF
 Information on the policy sets supported by the DIF
 Information on the DIF data transfer constants, such as max PDU size or the DIF’s MPL

 Enrollment

 Manages a flow’s lifecycle: allocation, monitoring and deallocation.

 Note that Flow allocation is separated from data transfer (there can be

more than one DTP/DTCP instance associated to the same flow at the
same time) – implication of Watson’s results

 Implementation:
 Simple distributed directory that implements a broadcast strategy to

disseminate directory updates
 Ok for initial experimentation on small networks, use more sophisticated approaches

in the near future

 Flow Allocation

DIF

IPC Process

Flow
Allocator

Appl.
Process

1
Allocate Request (destAPName, QoS Params)

2 Map request into policies,
see if is feasible.
Search dest app. at the
directory.

IPC Process

Flow
Allocator

Appl.
Process

5

3
M_CREATE(Flow object)

allocation_requested(srcApName)

4
Check access
control and
policies to see if
flow is feasible

6
allocation_response(
result)

7 Create
DTP/DTCP
instance

DTP/D
TCP

8

M_CREATE_R(Flow object) 2 Create
DTP/DTCP
instance

DTP/D
TCP

2 Create FAI

FAI FAI

4 Create FAI

9

Allocate
Response(result
)

 The component that decides how the resources in the IPC Process are
allocated.
 Dimensioning of the queues, creation/suspension/deletion of RMT queues,

creation/deletion of N-1 flows, and others

 Implementation:
 Only the component that manages the creation/deletion of N-1 flows is

implemented.
 Management is in charge of imposing the policies of when to create/delete N-1 flows;

management being an external DMS (NMS), the OS where the IPC Process is
executing or an autonomic management function in the IPC Process.

 Currently the number of N-1 flows to be created is a static policy specified in a
configuration file.

Resource Allocation

 The RINA data transfer protocol (EFCP) is based on Watson’s Delta-T
 Showed that the necessary and sufficient conditions for reliable synchronization

are to bound 3 timers: MPL, Maximum time to ACK and Maximum Time to
Retransmit.
 In other words, explicit connection establishment or teardown, such as in

TCP, is not required.

 EFCP has 2 parts: Data Transfer (DTP) and Data Transfer Control (DTCP),
loosely coupled through a state vector
 DTP performs the mechanisms that are tightly coupled to the transported SDU:

fragmentation, reassembly, sequencing, addressing, concatenation,
separation.

 DTCP performs the mechanisms that are loosely coupled: transmission control,
retransmission control and flow control.

 Implementation:
 An initial version of DTP that performs sequencing and addressing has been

implemented.

Data Transfer and
Data Transfer Control

 The RMT multiplexes the PDUs coming from the N-flows originated at the
IPC Process into one or more N-1 flows (in its multiplexing role) and forwards
the incoming PDUs to another IPC Process through the adequate N-1 flow
based on the PDU’s destination address (in its relaying role).

 Implementation:
 A simple RMT has been implemented, serving N FIFO queues in the order that

the PDUs arrive at each different queue
 Lots of room for improvement with different scheduling algorithms

RMT
Relaying and Multiplexing Task

© John Day, All Rights Reserved,
2011

The Shim DIF

21

Public Internet

Private IP
network

“Shim IPC
Process”

“Shim IPC
Process”

IPC
Process

“Shim IPC
Process”

IPC
Process

IPC
Process

“Shim IPC
Process”

Shim DIF

Shim DIF

 DIF

Appl.
Process

Appl.
Process

UDP flow UDP flow
TCP

flow(s) TCP
flow(s)

 The “shim IPC Process” for IP networks is not a “real IPC Process”. It
just presents an IP network as if it was a regular DIF.
 Wraps the IP network with the DIF interface.
 Maps the names of the IPC Processes of the layer above to IP addresses in the

IP network.
 Creates TCP and/or UDP flows based on the QoS requested by an “allocate

request”.

Outline

 Quick introduction to RINA and PSOC

 RINA Adoption strategy and current prototype
rationale

 Prototype components

 Implementation platform

 Next prototyping steps: FP7 IRATI
22

Implementation platform

 Implemented as part of the TINOS framework (a network
protocol experimentation framework)
 https://github.com/PouzinSociety/tinos

 Implemented in Java, using the OSGi technology (OSGi

container provided by the Eclipse Virgo container)
 OSGi is a component model that facilitates building modular Java

applications

 Tested on Mac OS X and Linux Debian, but should be multi-

platform (support all the platforms that Eclipse Virgo supports)

 Not yet fully integrated with TINOS (once it is, it will be possible
to instantiate several “systems” within a single Java process,
using XMPP as the underlying “physical substrate”)

23

https://github.com/PouzinSociety/tinos

Outline

 Quick introduction to RINA and PSOC

 RINA Adoption strategy and current prototype
rationale

 Prototype components

 Implementation platform

 Next prototyping steps: FP7 IRATI
24

 What? Main goal
 To advance the state of the art of RINA towards an architecture reference model and

specifications that are closer to enable implementations deployable in production
scenarios. The design and implementation of a RINA prototype on top of Ethernet will
enable the experimentation and evaluation of RINA in comparison to TCP/IP.

 Who? 4 partners

 How? Requested 870.000 € funding to the EC to perform 5 activities
 WP1: Project management
 WP2: Architecture, Use cases and Requirements
 WP3: Software Design and Implementation
 WP4: Deployment into OFELIA testbed, Experimentation and Validation
 WP5: Dissemination, Standardisation and Exploitation

 Project at a glance

Nextworks
Interoute

i2CAT

IBBT

Thanks for your attention!

You can contact me at
eduard.grasa@i2cat.net

More information about RINA at http://rina.tssg.org,
http://pouzinsociety.org, http://csr.bu.edu/rina

More information about the prototype at
https://github.com/PouzinSociety/tinos/wiki/RINA-Prototype

More information about IRATI at
http://irati.eu

http://rina.tssg.org
http://pouzinsociety.org
http://csr.bu.edu/rina
https://github.com/PouzinSociety/tinos/wiki/RINA-Prototype
http://irati.eu

	Slide Number 1
	Outline
	RINA Architecture
	Naming and addressing in RINA
	Outline
	RINA Adoption strategy
	RINA over IP benefits: Internetwork layer(s)
	RINA over IP benefits: Separate applications from infrastructure
	RINA over IP benefits: Next generation VPN
	Outline
	Architectural model
	 The IPC API
	 CACEP �Common Application Connection Establishment Phase
	 CDAP �Common Distributed Application Protocol
	RIB and RIB Daemon�Resource Information Base
	 Enrollment
	 Flow Allocation
	Resource Allocation
	Data Transfer and Data Transfer Control
	RMT�Relaying and Multiplexing Task
	The Shim DIF
	Outline
	Implementation platform
	Outline
	 Project at a glance
	Thanks for your attention!����You can contact me at�eduard.grasa@i2cat.net

